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Abstract: The purpose of this study was (1) to quantify above-ground biomass (AGB), below-
ground biomass (BGB), and carbon stocks; and (2) to evaluate the variation of these attributes
along the Mamanguape River estuary, Paraíba, Brazil. Eighteen plots were demarcated in six
study sites. In each plot, we measured circumference at breast height (CBH, 1.3 m above sub-
strate) and the height of all living individuals >1 m tall. The data were used in allometric equa-
tions to estimate biomass, and the values were converted into carbon stock. Above- and below-
ground biomass values showed averages of 136.6 ± 106.5 Mg ha -1 and 70.9 ± 38.8 Mg ha-1, re-
spectively. Average carbon stocks were estimated at 60.1 ± 46.9 MgC ha -1 for AGB, 27.7 ± 15.1
MgC ha-1 for BGB and 87.8 ± 61.4 MgC ha -1 for total biomass (AGB + BGB).  The variables
analyzed showed significant differences among the study sites, with no pattern along the estu-
ary. The results revealed that the mangroves analyzed play an important role as a carbon sink.
Considering the estimates in this study, the destruction of the mangrove vegetation in the Ma-
manguape River estuary would result in CO2 emissions equivalent to 0.41 Tg. Maintaining and
increasing blue carbon stocks requires sustainable management, with increased efforts to con-
serve and restore degraded areas in the mangrove and in the Mamanguape River basin.

Key words: blue carbon, climate change, mangrove forests, mangrove species, selective log-
ging.

Biomassa e estoque de carbono em florestas de mangue do estuário do Rio Mamanguape,
Brasil. Resumo:  Os objetivos deste estudo foram (1) quantificar a biomassa aérea (BA),  a
biomassa subterrânea (BS) e o estoque de carbono; e (2) avaliar a variação destes atributos ao
longo do estuário do Rio Mamanguape, Paraíba, Brasil. Dezoito parcelas foram instaladas em
seis sítios de estudo. Em cada parcela, medimos o diâmetro à altura do peito (DAP, 1,3 m acima
do substrato) e a altura de todos os indivíduos vivos >1 m de altura. Os dados foram usados em
equações alométricas para estimar a biomassa e os valores foram convertidos em estoque de
carbono. As biomassas aérea e subterrânea apresentaram médias de 136,6 ± 106,5 Mg ha-1 e
70,9 ± 38,8 Mg ha-1, respectivamente. Os estoques médios de carbono foram estimados em 60,1
± 46,9 MgC ha-1 para a BA, em 27,7 ± 15,1 MgC ha-1 para a BS e 87,8 ± 61,4 MgC ha-1 para a
biomassa total (BA + BS). As variáveis analisadas apresentaram diferenças significativas entre
os locais de estudo, não havendo padrão ao longo do estuário.  Os resultados revelaram que o
manguezal analisado tem um papel importante como sumidouro de carbono. Considerando as
estimativas  deste  estudo,  a  destruição  da  vegetação  de  manguezal  no  estuário  do  Rio
Mamanguape  resultaria  em  emissões  de  CO2 equivalentes  a  0,41  Tg.  A manutenção  e  o
incremento dos estoques de carbono azul requerem a gestão sustentável, com aumento dos
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esforços  de  conservação  e  restauração  das  áreas  degradadas  no  manguezal  e  na  bacia
hidrográfica do Rio Mamanguape.

Palavras-chave: carbono azul, mudança climática, florestas de mangue, espécies de mangue,
corte seletivo.

Introduction
The mangrove is a coastal ecosystem that pro-

vides various environmental services, such as main-
taining  marine  biodiversity,  providing  habitat  for
economically  important  species,  protecting  coast-
lines,  and  retaining  anthropogenic  contaminants
(Lacerda 1997, Barbier 2006, Mumby 2006, Adame
et al. 2010, Lee et al.  2014). In recent decades, one
of the environmental services of mangroves that has
attracted the most attention from the scientific com-
munity is their greater capacity (four times more) to
store carbon than terrestrial forest ecosystems (Do-
nato et al. 2011, Mcleod et al. 2011). However, man-
groves have high rates of deforestation and conver-
sion to  other  uses  that  compromise their  structure
and reduce their carbon storage (Valiela et al. 2001,
Ferreira & Lacerda 2016, Atwood et al. 2017, Diniz
et al. 2019, Pham et al. 2019). In Brazil, the poten-
tial  loss  of  carbon from mangroves has  been esti-
mated at 0.05 Tg C yr-1, ranking the country as the
fourth largest emitter of carbon dioxide globally (At-
wood et al. 2017).

Like tidal salt marshes and seagrass meadows,
mangroves are considered a blue carbon ecosystem
because they produce more net organic carbon than
they  lose  through  ecosystem  respiration
(Production/Respiration >1), which makes it possi-
ble to store carbon in organic form (Alongi 2023).
Mangroves  are  therefore  significant  carbon  sinks
and  a  promising  nature-based  solution  for  climate
change  mitigation  when  restored  or  conserved
(Kauffman  et  al.  2018a,  Kandasamy  et  al. 2021,
Zimmer  et  al. 2022,  Alongi  2023,  Lovelock et  al.
2024,  Xu  et  al. 2024,  Ju et  al. 2025,  Machite  &
Adams 2025). 

On a  global  scale,  the  total  carbon stock in
mangroves corresponds to a range of 6.2-11.7 Pg C
(Alongi 2020, Kauffman et al. 2020, Ouyang & Lee
2020).  In  Brazil,  the  total  carbon  stock  in  this
ecosystem (~0.44 Pg C) places the country in second
place in terms of global carbon stock, just behind In-
donesia (1.27 Pg C) (Beloto et al. 2023).

In mangrove forests,  carbon is  stored in the
soil, in above-ground biomass (AGB), below-ground
biomass (BGB), and dead organic matter (Mcleod et
al. 2011). The above- and below-ground biomasses
are important carbon pools in mangroves (Kauffman

& Donato 2012,  Howard  et  al. 2014,  Rovai  et  al.
2022). However, the carbon storage capacity of these
compartments can vary widely according to latitude,
geomorphology,  hydrology,  climate,  and  anthro-
pogenic disturbances (Castañeda-Moya  et al.  2013,
Estrada & Soares 2017, Magris et al. 2020, Rovai et
al. 2022, Beloto et al. 2023). For example, Beloto et
al. (2023)  showed  that  above-  and  below-ground
carbon stocks in Brazilian mangroves followed a lat-
itudinal trend, with the highest values found at lower
latitudes. Some studies have also identified trends in
biomass and carbon stocks along the estuarine gradi-
ent, with higher values recorded at sites under less
marine  influence  (Saintilan  1997,  Kauffman  et  al.
2011,  Wang  et  al.  2014).  In  addition,  mangrove
forests  impacted  by  anthropogenic  actions  have
lower carbon stocks (Schaeffer-Novelli et al. 2018).

Although Brazil  has one of the largest man-
grove areas in the world (Bunting et al. 2018), there
are regional data gaps regarding above- and below-
ground biomass and carbon stocks in these compart-
ments and in the ecosystem as a whole (Rovai et al.
2022,  Beloto  et  al. 2023).  In  the state  of Paraíba,
northeastern Brazil, there is a scarcity of studies on
this subject (Rovai  et al. 2022, Beloto  et al. 2023),
highlighting the need for more research to demon-
strate the contribution and role of regional factors in
mangrove carbon stocks.

The Mamanguape River estuary is located in
the state of Paraíba, northeastern Brazil (Fig. 1) and
is one of the main environments for the occurrence
and reproduction of the marine manatee Trichechus
manatus (threatened  with  extinction)  and  other
species  of  ecological  importance  (ICMBio  2014).
The mangrove forests of this estuary cover approxi-
mately 4,620 ha (Freires  et al. 2023) and are made
up of  Avicennia germinans (L.)  Stearn.,  Avicennia
schaueriana Stapft and Leechm, Laguncularia race-
mosa (L.) Gaertn.,  and  Rhizophora mangle L. The
mangroves of the Mamanguape River estuary pro-
vide various fishing resources for the riverside com-
munities  (Mourão  &  Nordi  2003).  A total  of  68
species  are  used,  including  fish,  crustaceans,  and
mollusks,  highlighting the importance of  the man-
groves for  the  communities  that  live  around them
(Rocha  et al.  2008). However, anthropogenic pres-
sure is high and has caused the destruction and
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Figure 1. Study sites analyzed in the mangroves of the Mamanguape River estuary. In particular, the Barra do Rio Ma-
manguape Environmental Protection Area (APA) and the Area of Relevant Ecological Interest (ARIE) Manguezais da
Foz do Rio Mamanguape. Prepared by Jerferson Lima.

degradation of the ecosystem. The main threats in-
clude severe changes in water circulation, the instal-
lation of shrimp ponds, occupation by cattle grazing,
and  selective  logging  (Freires  et  al.  2023).  These
threats to the ecosystem have resulted in significant
biomass losses and increased carbon dioxide emis-
sions.

As far as we know, there is no published data
in the literature on the biomass and carbon stock of
the mangrove forests of the Mamanguape River es-
tuary.  Therefore,  the  objectives  of  this  study were
the following: (1) to quantify AGB, BGB, and car-
bon stocks and (2) to evaluate the variation of these
attributes along the estuary.  This  study contributes
information to guide conservation and maintenance
strategies for the ecological functions and benefits of
the mangrove analyzed.

Material and Methods
Study area:  The Mamanguape River estuary is part
of two conservation units (Fig. 1): the Area of Rele-
vant Ecological Interest (ARIE) Manguezais da Foz
do Rio Mamanguape (created in 1985) and the Barra
do Rio Mamanguape Environmental Protection Area
(APA)  (created  in  1993).  The  region's  climate  is
tropical  and rainy (Am, according to the Köeppen
classification) and the rainy season is concentrated
between February and August. Annual rainfall varies

from 1600 to 1900 mm and the average annual tem-
perature  is  between  24º  and  26°C  (Alvares  et  al.
2013). The tidal regime in the Mamanguape River
estuary is semi-diurnal and the amplitude is consis-
tent with the mesotidal class, with average heights of
syzygy and quadrature reaching 2.18 and 1.04 m, re-
spectively. 
Biomass and carbon stock: Six study sites were es-
tablished along the Mamanguape River estuary (Fig.
1), spaced an average of 3.5 km apart. At each study
site, three plots were marked out parallel to the body
of water (5 m from the shore), 10 m apart. The area
of the 18 plots varied between 100 and 400 m2, and
was determined according to tree density (including
at  least  30 live  trees  within each plot)  (Schaeffer-
Novelli & Cintron 1986). Within each plot, the cir-
cumference at breast height (CBH) and the height of
living individuals ≥ 1 m in height were measured.
Identification was carried out  to  the  species  level.
CBH was measured with a tape measure and height
with  a  telescopic  stick  with  centimeter  marks
(CRAIN CMR, model:  90182).  The occurrence of
cut trees was recorded. Data were collected between
August 2019 and February 2020 and seasonal varia-
tion was not assessed.

From the CBH, the diameter at breast height
(DBH)  was  calculated  according  to  the  formula:
DBH = CBH /  π. Subsequently, the average height,
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average DBH, basal area, stem density, dominance,
and  relative  density  were  calculated  according  to
Schaeffer-Novelli & Cintrón (1986). The dominance
and relative density of the species for each site were
calculated from the sum of the basal area values and
the density of individuals in the plots, respectively.

AGB and BGB were estimated non-destruc-
tively using allometric equations (Table I).  The car-
bon content of the trees was estimated by multiply-
ing the AGB and BGB values by 0.44 (Rodrigues et
al. 2014) and 0.39 (Kauffman & Donato 2011), re-
spectively. The total carbon stock of the vegetation
was estimated by adding the AGB and BGB carbon
values.  The total  carbon stock  was  converted into
CO2 equivalents  by  multiplying  by  a  factor  3.67
(Kauffman & Donato 2011).
Sediment variables: Abiotic variables were sampled
in March 2020.  A porewater sample was collected
from each plot  at  a  depth of  50 cm using a PVC
tube, hose, and syringe. The salinity of the water was
estimated in the laboratory using a refractometer. 

A soil  sample (30 cm deep) was taken from
each plot to estimate the percentage of organic mat-
ter  and grain size.  Organic  matter  was determined
using the calcination method. Aliquots of 2 g of the
< 2 mm fraction of the soil were dried (80°C) to ob-
tain  dry  weight.  The  samples  then  remained  in  a
muffle furnace at 550°C for 2 hours. Subsequently,
the  percentage  of  organic  matter  was  calculated
based on the initial and final weights of the samples
(accuracy of 0.0001 g). 

For  the  particle  size  analysis,  the  soil  was
dried (80°C) and sieved to separate the < 2 mm frac-
tion. In aliquots of 30 g of soil, 250 mL of distilled
water and 10 mL of 1 M NaOH were added. The
sample volume was topped up to 1 L and then stirred
manually and left to stand overnight. The sand frac-
tion and the fine fraction (silt+clay) were separated
under running water using a 63-µm sieve and the re-
tained fraction (sand) was then dried at 80°C.

Statistical  analysis.  Data  were  square  root  trans-
formed for comparison among study sites.  Vegeta-
tion and sediment variables were compared using the
ANOVA  one-way  and Tukey’s post-hoc test.  A
canonical correspondence analysis (CCA) was car-
ried  out  using  the  data  on  height,  stem  density,
AGB+BGB,  and  sediment  variables  (interstitial
salinity, silt+clay, and percentage of organic matter).
The same analysis was carried out with data on the
relative  density  of  species  and sediment  variables.
All statistical analyses were carried out in the R en-
vironment (R Core Team, 2024).

Results
The basal area was lower at S4 and higher at

sites S1 and S6 (Table II; Fig. 2). For height, diame-
ter  and  density,  the  differences  among study  sites
were not statistically significant due to the high vari-
ability  among  plots.  Anthropic  actions  were  ob-
served,  such as  the  use  of a net  to catch the crab
Ucides cordatus. Furthermore, selective logging was
recorded in all plots (relative frequency of 100%) at
sites 3, 4 and 5 and in two plots (relative frequency
of 67%) at sites 1, 2 and 6.

Four species were recorded in this study: Avi-
cennia germinans, Avicennia schaueriana, Laguncu-
laria  racemosa,  and  Rhizophora  mangle.  The
species showed trends in their distribution along the
estuary (Fig. 3). Avicennia germinans was restricted
to the upper estuary (less marine influence). Lagun-
cularia racemosa showed a wide distribution with a
tendency to reduce its contribution in terms of domi-
nance and relative density towards the ocean.  Avi-
cennia  schaueriana and  Rhizophora  mangle also
showed  a  wide  distribution  along  the  estuary,  but
with a tendency to increase in dominance and rela-
tive density towards the lower estuary (greater ma-
rine influence).

Table I. Allometric equations for estimating above-ground biomass (AGB) and below-ground biomass (BGB) of man-
grove species

Species Equation R2 Reference
AGB

Avicennia germinans AGB = 0.14 D2.4 0.97 Fromard et al. (1998)
Avicennia schaueriana AGB = 123.8716 D2.5282 0.99 Estrada et al. (2014)
Laguncularia racemosa AGB = 0.1442 D2.325 0.96 Medeiros & Sampaio (2008)
Rhizophora mangle AGB = 0.2938 D2.384 0.92 Medeiros & Sampaio (2008)

BGB
All species BGB = 0.199 ρ0.899 D2.22 0.95 Komiyama et al. (2005)

Notes: D = diameter at breast height (cm) and ρ = wood density (g cm-3). Wood density for trees was 0.64 for A. germi-
nans (Virgulino-Júnior et al. 2020), 0.73 for A. schaueriana, 0.93 for L. racemosa, and 0.93 for R. mangle (Medeiros &
Sampaio, 2008).
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Table II. Summary of one-way ANOVA for vegetation and soil variables analyzed at the study sites in the mangrove of
the Mamanguape River estuary. *Statistically significant p-values (p<0.05).

F-statistic P
Vegetation
Height 0.6304 0.68048
Diameter 0.6605 0.66018
Basal area 4.2069 0.01928*
Density 1.3775 0.30299
Above-ground biomass 4.0210 0.02240*
Below-ground biomass 3.7315 0.02862*
Above-ground biomass carbon 4.0210 0.02240*
Below-ground biomass carbon 3.7315 0.02862*

Soil
Porewater salinity 12.735 0.000187*
Organic matter 29.605 0.000002*
Sand 14.329 0.000105*
Silt + clay 20.194 0.000018*

Figure 2. Structural parameters in the sites (S) analyzed in the mangrove of the Mamanguape River estuary. Differ -
ent lowercase letters indicate significant differences among sites (p < 0.05).
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The  average  AGB values  of  the  study  sites
ranged from 24.7 to 200.1 Mg ha-1 (mean 136.6 ±
106.5 Mg ha-1), while for BGB these values ranged
from 13.2 to 79.3 Mg ha-1 (mean 70.9 ± 38.8 Mg ha-

1)  (Figs.  4a-4b).  The average AGB/BGB ratio was
1.8.  The  carbon  stocks  of  AGB and  BGB ranged
from 10.9 to 88.1 MgC ha-1 (mean 60.1 ± 46.9 MgC
ha-1) and from 5.2 to 30.9 MgC ha-1 (mean 27.7 ±
15.1 MgC ha-1), respectively (Figs. 4c-4d).  Above-
ground and below-ground biomass and carbon stock
were significantly higher at site S6 and lower at site
S4 (Table II; Fig. 4).

The average total biomass carbon stock (AGB
+ BGB) of the Mamanguape River estuary mangrove
was estimated at 87.8 ± 61.4 MgC ha-1 (322.0 MgCO2

ha-1). Considering the total mangrove area of the Ma-
manguape River estuary (4,620 ha) and the average
carbon stock per hectare (87.8 MgC ha-1), the calcula-
tions  indicated  that  the  mangrove  biomass  stores
around 405,636 MgC, equivalent to 0.41 Tg CO2. 

Porewater salinity was highest at sites S4 and
S5 and lowest at S1 to S3 (Fig. 5). The highest per-
centages of organic matter were recorded in S2 and
the  lowest  in  sites  S1,  S5  and S6.  The  sediments
were predominantly composed of fine sediments, ex-
cept at S6 with more than 80% sand. The sand frac-
tion was more abundant at site S6, with lower per-
centages at sites S1 to S4 (Fig. 5). The opposite re-
sults were recorded for the fine fraction (silt + clay). 

0%

20%

40%

60%

80%

100%

S1 S2 S3 S4 S5 S6

D
o

m
in

a
nc

e

Ag As Lg Rh A

0%

20%

40%

60%

80%

100%

S1 S2 S3 S4 S5 S6

R
e

la
tiv

e 
D

en
si

ty

B

Figure 3  (opposite column). A. Dominance (basal area)
and B. relative density of species in the sites (S) analyzed
in the mangrove of the Mamanguape River estuary. Ag:
Avicennia germinans, As: Avicennia schaueriana, Lg: La-
guncularia racemosa and Rh: Rhizophora mangle.

CCA indicated that height, stem density, and
total biomass (AGB+BGB) were not related to sedi-
ment  variables  (999 permutations,  F = 1.219,  p  =
0.284) and total inertia was 0.02 (0.3% constrained).
However, the CCA showed that the relative density
of species was related to the sediment variables (per-
mutations  test:  999  permutations,  F  =  3.705,  p  <
0.001)  and the total  inertia  was 1.82 (80.6% con-
strained). The first  two axes explained 96% of the
total  variance  accumulated  in  the  mean calculated
for the four species in terms of sediment variables
(Fig.  6).  The  ordination  diagram  showed  that  the
highest  relative  densities  of  Avicennia  germinans
and  Laguncularia  racemosa were  associated  with
the lowest  interstitial  salinity  (Fig.  6).  In  contrast,
the  highest  relative  density  of  Avicennia schaueri-
ana was associated with muddier soils with a higher
percentage  of  organic  matter,  while  Rhizophora
mangle was associated with sandier soils (Fig. 6).

Discussion
The  results  showed  significant  differences

among the study sites  for  basal  area,  AGB, BGB,
and carbon stock. However, no pattern in vegetation
structure  was  identified  along  the  estuary.  Differ-
ences among study sites may be attributed to varia-
tion  in  regulatory  factors  (e.g.,  salinity),  resources
(e.g.,  nutrients),  and  hydroperiod  (e.g.,  flood  fre-
quency  and  river  water  supply)  that  control  the
structure and functioning of mangrove forests (Twil-
ley & Rivera-Monroy 2005). However, there was a
lack of association among height, stem density, total
biomass, and sediment variables (interstitial salinity,
organic matter, and silt+clay).

Studies  have  shown  that  height,  basal  area,
biomass,  and carbon stock tend to decrease down-
stream (Soto & Jimenez 1982, Saintilan, 1997, Silva
et  al.  2005;  Kauffman  et  al.  2011,  Martins  et  al.
2011,  Wang  et  al.  2014,  Calegario  et  al.  2015,
Castillo  et al. 2018, Rodríguez-Reales  et al. 2025).
These  studies  suggest  that  lower  values  of  these
variables in locations with greater marine influence
are  associated  with  higher  salinity  values.  In  the
present study, contrary to expectations, salinity val-
ues were higher in locations further from the ocean
(S4 to S6), where vegetation, in general, did not ex-
hibit less structural development. The higher salinity
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Figure 4. Biomass and carbon stock at the sites (S) analyzed in the mangrove of the Mamanguape River estuary. A.
above-ground biomass (AGB), B. below-ground biomass (BGB), C. carbon in above-ground biomass and D. carbon in
below-ground biomass. Different lowercase letters indicate significant differences among sites (p < 0.05).

at sites S4 to S6 is probably related to the lower fre-
quency of substrate flooding due to the higher eleva-
tion of the terrain. Other factors can also influence
the  structure  and  functioning  of  mangrove  forests
when salinity is below the critical value of 65 (Cin-
tron et al. 1978), such as forest age, nutrient concen-
tration,  percentage  of  organic  matter,  and  anthro-
pogenic disturbances.  For example,  higher nutrient
concentrations in the sediment result in better struc-
tural  development  of  mangrove  forests  (Chen  &
Twilley 1999) and higher net  primary productivity
(Castañeda-Moya  et  al.  2013).  Costa  et  al. (2015)
also observed that mangroves showed higher values
of height and basal area associated with higher per-
centages of soil organic matter, with no trends along
the salinity gradient.

The  forests  analyzed  in  this  study  are  sec-
ondary  and  anthropic  actions  interfere  with  their
structural development and the carbon stock in the
biomass along the estuary. Considering all the plots
analyzed, 88% included cut trunks and this anthro-

pogenic action was also observed in the areas sur-
rounding  the  sampling  units.  Logging  can  cause
changes in the structure and functioning of ecosys-
tems. Mangrove forests subjected to this disturbance
exhibit  reduced  values  for  height,  diameter,  basal
area,  and/or  density  (Paludo  &  Klonowski  1999,
Walters  2005,  Souza  & Sampaio  2001,  Alongi  &
Carvalho 2008, Costa et al. 2021), with a consequent
decrease in biomass and carbon stock.

Intense selective logging in the mangroves of
the  Mamanguape  River  estuary  has  been  docu-
mented  since  the  1920s.  The  establishment  of  the
former Rio Tinto Textile Company in 1924 resulted
in excessive logging to  obtain  firewood for  ovens
and factory buildings (ICMBio 2014, Brissac 2019).
The Rio Tinto Textile Company was shut down in
1983 and there was a reduction in logging for indus-
trial  activity.  However,  the  riverside  communities
(indigenous and non-indigenous) also exploited the
mangroves  for  firewood,  charcoal,  and  timber  for
building houses, boats, and stakes for yam plantations;
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Figure 5. Sediment variables at the sites (S) analyzed in the mangrove swamp of the Mamanguape River estuary. Dif -
ferent lowercase letters indicate significant differences among sites (p < 0.05).
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Figure 6 (previous page). Ordination diagram of the first two axes of the canonical correspondence analysis for the rel-
ative density data and sediment variables in the study sites in the mangrove of the Rio Mamanguape estuary. Environ-
mental variables are represented by vectors. Ag:  Avicennia germinans, As:  Avicennia schaueriana, Lg:  Laguncularia
racemosa, and Rh: Rhizophora mangle.

and  extracting  the  bark  of  the  trees  for  tannin
(Paludo & Klonowski 1999). Logging took place in-
tensively  throughout  the  mangrove  area  without
technical  criteria,  with  approximately  44,095 trees
being removed between June 1989 and June 1990
(Paludo  & Klonowski  1999).  Currently,  there  has
been a reduction in the extraction of wood from the
mangrove  due  to  the  substitution  of  materials  for
building houses (masonry) and the intensification of
conservation  enforcement  actions.  However,  selec-
tive  logging  is  still  recorded  (Costa  et  al. 2021,
Freires et al. 2023), despite the ecosystem being part
of two Conservation Units.

This study showed that  there were trends in
the distribution of species along the estuarine gradi-
ent.  Avicennia  germinans and  Laguncularia  race-
mosa showed greater contributions in the upper estu-
ary,  while  Avicennia  schaueriana and  Rhizophora
mangle showed  greater  densities  in  environments
under  greater  marine  influence.  Similar  patterns
have  been  observed  in  other  Brazilian  mangroves
(Silva  et al. 2005,  Petri  et al.  2011,  Estrada  et al.
2013,  Costa  et  al. 2015,  Calegario  et  al. 2015).
However, some studies have reported Laguncularia
racemosa dominating sites with greater  marine in-
fluence (Chen & Twilley 1999, Bernini & Rezende
2010,  Chagas  et  al.  2015).  The  zonation  of  man-
grove species  along the estuarine gradient  may be
related  to  interspecific  differences  in  competitive
abilities in relation to salt tolerance, nutrient uptake,
and flood tolerance (Cintrón et al. 1978, Castañeda-
Moya et al. 2013).

In addition to influencing structural develop-
ment and carbon storage in mangrove biomass, an-
thropogenic actions also have the potential to alter
species  composition.  Studies suggest  that  selective
logging  results  in  changes  in  abundance,  as  some
species may be exploited more than others (Eusebio
et al. 1987, Pinzón et al. 2003, Walters 2005, Chagas
et al. 2015, Costa  et al. 2021). In the Mamanguape
River estuary,  selective logging mainly affects  La-
guncularia  racemosa and  Rhizophora  mangle
(Paludo  &  Klonowski  1999).  However,  more  re-
cently, Costa  et al. (2021) demonstrated that selec-
tive logging caused a change in the relative density
of species in the upper estuary of the Mamanguape
River, where  Avicennia germinans was replaced by
Laguncularia  racemosa in  some  of  the  sites  ana-

lyzed. In addition, due to its opportunistic character-
istics  (Saenger  2002,  Tomlinson  2016),  Laguncu-
laria racemosa has been associated with forests al-
tered  by anthropogenic  disturbances  (Soares  1999,
Bernini & Rezende 2010). Within this context,  we
assume that anthropic actions influence the distribu-
tion of the species along the estuary analyzed.

The  anthropogenic  disturbances  that  affect
carbon storage and species  distribution are  not  re-
stricted to selective logging, as the mangroves of the
Mamanguape River estuary are in an alarming state
of  conservation.  The  amount  of  fresh  water  dis-
charged into the mangrove plays an important role,
as it determines the salinity of the soil and water in
the ecosystem and the availability  of  nutrients  for
plant growth (Woodroffe 1992). The mangroves ana-
lyzed show signs of stress and widespread death in
various places throughout the estuary due to the re-
duction in fresh water.  This has been attributed to
changes in the use and occupation of the watershed
and climate change (Freires et al. 2023). 

Due to the increasing demand for water up-
stream, the amount of freshwater reaching the man-
grove  is  reduced  in  many  mangroves,  which  can
cause a loss of the ecosystem's coverage area and a
change  in  the  composition  of  mangrove  species
(Gnanappazham & Selvam 2014).  Changes  in  the
Mamanguape River basin are related to its history of
intense deforestation, the high demand for fresh wa-
ter for irrigation of sugarcane (dominant in the land-
scape)  and  other  crops,  and  the  degradation  of
springs.  In addition,  the  lower  reaches of the Ma-
manguape  River  have  undergone  various  drainage
and dyke construction works, which have resulted in
drastic hydrological changes in the mangrove forest.
We therefore assume that the various anthropogenic
interventions  may  have  caused  a  reduction  in  the
tidal prism in the Mamanguape River estuary.

According to Lewis & Brown (2014), the de-
crease in the tidal prism results in the closure of tidal
channels  and  eventual  overgrowth  of  mangroves.
This further reduces the tidal prism and therefore the
tidal flow, and eventually leads to the eradication of
mangrove forests due to hypersalinity or excessive
flooding from heavy rains that cannot drain from the
system (Lewis & Brown 2014). In the mangroves of
the Mamanguape River estuary, the progressive for-
mation of several hypersaline plains on the banks of
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the  river,  tributaries,  and  tidal  channels  has  been
recorded,  with  the  consequent  death  of  mangrove
plants (Freires  et al. 2023), probably due to the re-
duction of the tidal  prism. High tree mortality has
also occurred due to the obstruction of channels that
prevent  the  flow  of  tides  in  internal  areas  of  the
mangrove. In these places, so-called “ghost forests”
have been formed, with or without the collapse of
the soil  surface. According to Krauss  et al.  (2018)
tree  mortality  reduces  root  renewal,  with a  conse-
quent  decrease in the apparent  density of the soil,
which  results  in  its  compaction  and  subsidence.
These sites tend to have an accumulation of tidal wa-
ter, where stagnation and an increase in water tem-
perature  prevent  the  establishment  of  mangrove
plants (Krauss et al., 2018).

Climate change is reducing potential blue car-
bon sinks around the world (Richards  et al. 2020).
Research has shown the influence of precipitation on
the  primary  productivity  of  coastal  wetlands,  as
plant productivity increases where there are higher
precipitation rates, which lead to a reduction in pore-
water  salinity  (Gabler  et  al. 2017,  Osland  et  al.
2018, Duke  et al. 2019). Changes in climate affect
carbon storage in mangroves due to changes in pre-
cipitation  patterns,  temperature  increases,  and  sea
level rise (Gonneea et al. 2004). In the mangroves of
the  Mamanguape  River  estuary,  there  has  already
been a downward trend in rainfall and an increase in
air  temperature  in  recent  decades  (Freires  et  al.
2023). These changes have accelerated the degrada-
tion  of  the  ecosystem,  as  observed  in  other  man-
groves (Gnanappazham & Selvam 2014, Ward et al.
2016, Friess et al. 2022).

The fresh water  that  reaches  the  mangroves
comes  from  surface  runoff,  precipitation,  and
groundwater  infiltration.  As  mentioned  earlier,  the
high demand for water for sugarcane cultivation, de-
forestation  in  the  watershed,  and  the  decrease  in
rainfall have reduced the amount of fresh water for
the  mangroves  of  the  Mamanguape  River  estuary.
However,  we  believe  that  the  situation  could  get
even worse, as groundwater consumption for sugar-
cane cultivation has increased in recent years due to
the scarcity of surface water. Increased groundwater
infiltration results in increased mangrove productiv-
ity because it reduces salinity levels (Mazda & Ikeda
2006,  Hayes  et  al.  2019).  In  addition,  access  to
groundwater  also  increases  nutrient  availability,
which leads to higher primary productivity of man-
grove species (Hayes et al. 2019). Therefore, the in-
creasing use of groundwater for irrigation of sugar-
cane plantations  is  expected to  increase interstitial

salinity and result in further changes in species com-
position, reduction in structural parameters (height,
diameter and basal  area),  and loss of biomass and
carbon stocks in  the  mangrove forests  of  the  Ma-
manguape River estuary.

Our estimate of AGB (136.6 Mg ha-1) is at the
lower end of the global average range, with values
varying from 8.0 Mg ha-1 (Kauffman et al. 2011) to
573.0 Mg ha-1 (Kauffman & Cole 2010). The AGB/
BGB ratio was 1.8 and this value is within the range
of 1.0 to 4.4 documented for mangroves worldwide
(Miao et al. 1998, Komiyama et al. 2008, Ragavan
et al. 2021, Singh et al. 2023).

The carbon stock in the AGB recorded in the
study area  (60.1  MgC ha-1)  was  lower  than  those
found in  Amazonian  mangroves  (145.0  MgC ha-1)
(Kauffman  et al. 2018a), other mangrove forests in
northeastern Brazil (70.0 MgC ha-1) (Kauffman et al.
2018b), and mangrove forests in southeastern Brazil
(75.3  MgC ha-1)  (Rovai  et  al. 2021).  The  carbon
stock in the BGB recorded (27.7 MgC ha-1) was also
lower  when  compared  to  mangrove  forests  in
Guaratiba (104.4 MgC ha-1) (Santos et al. 2017) and
mangroves in the Cananéia-Iguape estuarine system
(82.0 MgC ha-1) (Rovai  et al. 2021), both in south-
eastern Brazil. Considering the latitudinal trends ob-
served in Brazilian mangroves (Beloto  et al. 2024),
it was expected that the biomass carbon stocks in the
mangroves of the Mamanguape River estuary would
be  higher  than  in  the  mangroves  of  southeastern
Brazil. However, differences among mangroves also
occur due to  variations  in the  availability of  fresh
water and nutrients, composition, age of the forest,
and  anthropogenic  influence  (Lugo  &  Snedaker
1974,  Schaeffer-Novelli  et  al. 1990,  Saenger  &
Snedaker 1993, Boillon et al. 2008, Alongi 2014).

Our biomass and carbon stock estimates were
carried out for fringe forests (high frequency of tidal
inundation) according to Lugo & Snedaker  (1974)
and Schaeffer-Novelli et al. (2000). The average car-
bon stock in AGB in the study area (60.1 MgC ha-1)
was lower than the global average for fringe forests
(81.8 MgC ha-1) (Estrada & Soares 2017), but was
higher when compared to fringe forests drastically
altered by anthropogenic disturbances in Araçá Bay,
São Paulo, Brazil (32.4 MgC ha-1) (Schaeffer-Nov-
elli et al. 2018).

Fringe forests exhibit greater biomass and car-
bon stock when compared to basin forests and shrub
forests (Estrada & Soares 2017, Rovai  et al. 2021).
Thus, the total carbon stock in the mangrove trees of
the Mamanguape River estuary (405,636 MgC) may
be lower than we estimated because we did not sam-
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ple basin forests. Even so, our data are useful as po-
tential  carbon stock values  that  can be reached or
surpassed after restoring degraded areas in the man-
grove analyzed.

Considering the estimates from this study, the
destruction  of  mangrove  biomass  in  the  Maman-
guape River estuary would result in CO2  emissions
equivalent to 0.41 Tg. This ecosystem lost 2.1% of
its coverage area between 1985 and 2020 (Freires et
al. 2023), which corresponded to the emission of ap-
proximately  31,262  MgC,  equivalent  to  0.03  Tg
CO2. We assume that emissions could be even higher
if  we  take  into  account  mangrove  areas  that  are
showing signs of stress and mortality. 

The results revealed that the mangroves ana-
lyzed play an important role as a carbon sink. How-
ever, the biomass and carbon stock values recorded
were lower than other Brazilian mangroves, proba-
bly due to the variation of natural factors (e.g., avail-
ability of fresh water and nutrients) and to intense
anthropogenic  disturbance related  to  selective log-
ging, changes in the Mamanguape River basin, and
climate change. Our study has some limitations that
may have influenced the biomass and carbon stock
values. As mentioned previously, sampling was re-
stricted to fringe forest and therefore the values may
have  been  overestimated.  Furthermore,  there  were
limitations  in  quantifying  the  impact  of  selective
logging on carbon stocks. Therefore, we suggest fu-
ture studies to fill these gaps. Despite this, the study
raised warnings and made important contributions to
planning the sustainable management of mangroves,
especially in the face of climate change. Maintaining
and increasing blue carbon stocks requires sustain-
able management, with increased efforts to conserve
and restore degraded areas in the mangroves and the
Mamanguape River basin. In addition, government
agencies should step up control  and monitoring of
groundwater use in the watershed to prevent an in-
crease  in  salinity  in  the  estuarine  region,  which
could affect the mangrove and result in higher CO2

emissions.  Conserving  this  ecosystem can  provide
benefits for traditional  communities and contribute
to increasing climate resilience (Zeng et al. 2021).
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