PANAMJAS

W Pan-American Journal of Aguatic Sciences

Biomass and carbon stock in mangrove forests of the Mamanguape
River estuary, Brazil

ELAINE BERNINI*, JESSICA JOSEANE VIANA DE VASCONCELOS, JERFERSON DE LIMA FREIRES &
FREDERICO LAGE-PINTO

Laboratory of Coastal and Ocean Ecology, Federal University of Paraiba, Campus IV, Litoral Norte, Rio
Tinto. Av. Santa Elisabete, 160, Centro, Rio Tinto, Paraiba, 58297-000, Brasil.

* Corresponding author: elainebernini@hotmail.com

Abstract: The purpose of this study was (1) to quantify above-ground biomass (AGB), below-
ground biomass (BGB), and carbon stocks; and (2) to evaluate the variation of these attributes
along the Mamanguape River estuary, Paraiba, Brazil. Eighteen plots were demarcated in six
study sites. In each plot, we measured circumference at breast height (CBH, 1.3 m above sub-
strate) and the height of all living individuals >1 m tall. The data were used in allometric equa-
tions to estimate biomass, and the values were converted into carbon stock. Above- and below-
ground biomass values showed averages of 136.6 + 106.5 Mg ha™ and 70.9 + 38.8 Mg ha™, re-
spectively. Average carbon stocks were estimated at 60.1 + 46.9 MgC ha™ for AGB, 27.7 + 15.1
MgC ha™ for BGB and 87.8 + 61.4 MgC ha™ for total biomass (AGB + BGB). The variables
analyzed showed significant differences among the study sites, with no pattern along the estu-
ary. The results revealed that the mangroves analyzed play an important role as a carbon sink.
Considering the estimates in this study, the destruction of the mangrove vegetation in the Ma-
manguape River estuary would result in CO, emissions equivalent to 0.41 Tg. Maintaining and
increasing blue carbon stocks requires sustainable management, with increased efforts to con-
serve and restore degraded areas in the mangrove and in the Mamanguape River basin.

Key words: blue carbon, climate change, mangrove forests, mangrove species, selective log-
ging.

Biomassa e estoque de carbono em florestas de mangue do estuario do Rio Mamanguape,
Brasil. Resumo: Os objetivos deste estudo foram (1) quantificar a biomassa aérea (BA), a
biomassa subterranea (BS) e o estoque de carbono; e (2) avaliar a variacdo destes atributos ao
longo do estudrio do Rio Mamanguape, Paraiba, Brasil. Dezoito parcelas foram instaladas em
seis sitios de estudo. Em cada parcela, medimos o diametro a altura do peito (DAP, 1,3 m acima
do substrato) e a altura de todos os individuos vivos >1 m de altura. Os dados foram usados em
equacdes alométricas para estimar a biomassa e os valores foram convertidos em estoque de
carbono. As biomassas aérea e subterrdnea apresentaram médias de 136,6 + 106,5 Mg ha™ e
70,9 + 38,8 Mg ha™, respectivamente. Os estoques médios de carbono foram estimados em 60,1
+ 46,9 MgC ha para a BA, em 27,7 + 15,1 MgC ha para a BS e 87,8 + 61,4 MgC ha para a
biomassa total (BA + BS). As varidveis analisadas apresentaram diferengas significativas entre
os locais de estudo, ndo havendo padrdo ao longo do estuario. Os resultados revelaram que o
manguezal analisado tem um papel importante como sumidouro de carbono. Considerando as
estimativas deste estudo, a destruicdo da vegetacdo de manguezal no estuario do Rio
Mamanguape resultaria em emissoes de CO, equivalentes a 0,41 Tg. A manutencdo e o
incremento dos estoques de carbono azul requerem a gestdo sustentavel, com aumento dos
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esforcos de conservagdo e restauracdo das areas degradadas no manguezal e na bacia

hidrografica do Rio Mamanguape.

Palavras-chave: carbono azul, mudanga climética, florestas de mangue, espécies de mangue,

corte seletivo.

Introduction

The mangrove is a coastal ecosystem that pro-
vides various environmental services, such as main-
taining marine biodiversity, providing habitat for
economically important species, protecting coast-
lines, and retaining anthropogenic contaminants
(Lacerda 1997, Barbier 2006, Mumby 2006, Adame
et al. 2010, Lee et al. 2014). In recent decades, one
of the environmental services of mangroves that has
attracted the most attention from the scientific com-
munity is their greater capacity (four times more) to
store carbon than terrestrial forest ecosystems (Do-
nato et al. 2011, Mcleod et al. 2011). However, man-
groves have high rates of deforestation and conver-
sion to other uses that compromise their structure
and reduce their carbon storage (Valiela et al. 2001,
Ferreira & Lacerda 2016, Atwood et al. 2017, Diniz
et al. 2019, Pham et al. 2019). In Brazil, the poten-
tial loss of carbon from mangroves has been esti-
mated at 0.05 Tg C yr, ranking the country as the
fourth largest emitter of carbon dioxide globally (At-
wood et al. 2017).

Like tidal salt marshes and seagrass meadows,
mangroves are considered a blue carbon ecosystem
because they produce more net organic carbon than
they lose through ecosystem  respiration
(Production/Respiration >1), which makes it possi-
ble to store carbon in organic form (Alongi 2023).
Mangroves are therefore significant carbon sinks
and a promising nature-based solution for climate
change mitigation when restored or conserved
(Kauffman et al. 2018a, Kandasamy et al. 2021,
Zimmer et al. 2022, Alongi 2023, Lovelock et al.
2024, Xu et al. 2024, Ju et al. 2025, Machite &
Adams 2025).

On a global scale, the total carbon stock in
mangroves corresponds to a range of 6.2-11.7 Pg C
(Alongi 2020, Kauffman et al. 2020, Ouyang & Lee
2020). In Brazil, the total carbon stock in this
ecosystem (~0.44 Pg C) places the country in second
place in terms of global carbon stock, just behind In-
donesia (1.27 Pg C) (Beloto et al. 2023).

In mangrove forests, carbon is stored in the
soil, in above-ground biomass (AGB), below-ground
biomass (BGB), and dead organic matter (Mcleod et
al. 2011). The above- and below-ground biomasses
are important carbon pools in mangroves (Kauffman

& Donato 2012, Howard et al. 2014, Rovai et al.
2022). However, the carbon storage capacity of these
compartments can vary widely according to latitude,
geomorphology, hydrology, climate, and anthro-
pogenic disturbances (Castafieda-Moya et al. 2013,
Estrada & Soares 2017, Magris et al. 2020, Rovai et
al. 2022, Beloto et al. 2023). For example, Beloto et
al. (2023) showed that above- and below-ground
carbon stocks in Brazilian mangroves followed a lat-
itudinal trend, with the highest values found at lower
latitudes. Some studies have also identified trends in
biomass and carbon stocks along the estuarine gradi-
ent, with higher values recorded at sites under less
marine influence (Saintilan 1997, Kauffman et al.
2011, Wang et al. 2014). In addition, mangrove
forests impacted by anthropogenic actions have
lower carbon stocks (Schaeffer-Novelli et al. 2018).

Although Brazil has one of the largest man-
grove areas in the world (Bunting et al. 2018), there
are regional data gaps regarding above- and below-
ground biomass and carbon stocks in these compart-
ments and in the ecosystem as a whole (Rovai et al.
2022, Beloto et al. 2023). In the state of Paraiba,
northeastern Brazil, there is a scarcity of studies on
this subject (Rovai et al. 2022, Beloto et al. 2023),
highlighting the need for more research to demon-
strate the contribution and role of regional factors in
mangrove carbon stocks.

The Mamanguape River estuary is located in
the state of Paraiba, northeastern Brazil (Fig. 1) and
is one of the main environments for the occurrence
and reproduction of the marine manatee Trichechus
manatus (threatened with extinction) and other
species of ecological importance (ICMBio 2014).
The mangrove forests of this estuary cover approxi-
mately 4,620 ha (Freires et al. 2023) and are made
up of Avicennia germinans (L.) Stearn., Avicennia
schaueriana Stapft and Leechm, Laguncularia race-
mosa (L.) Gaertn., and Rhizophora mangle L. The
mangroves of the Mamanguape River estuary pro-
vide various fishing resources for the riverside com-
munities (Mourdo & Nordi 2003). A total of 68
species are used, including fish, crustaceans, and
mollusks, highlighting the importance of the man-
groves for the communities that live around them
(Rocha et al. 2008). However, anthropogenic pres-
sure is high and has caused the destruction and
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Figure 1. Study sites analyzed in the mangroves of the Mamanguape River estuary. In particular, the Barra do Rio Ma-
manguape Environmental Protection Area (APA) and the Area of Relevant Ecological Interest (ARIE) Manguezais da

Foz do Rio Mamanguape. Prepared by Jerferson Lima.

degradation of the ecosystem. The main threats in-
clude severe changes in water circulation, the instal-
lation of shrimp ponds, occupation by cattle grazing,
and selective logging (Freires et al. 2023). These
threats to the ecosystem have resulted in significant
biomass losses and increased carbon dioxide emis-
sions.

As far as we know, there is no published data
in the literature on the biomass and carbon stock of
the mangrove forests of the Mamanguape River es-
tuary. Therefore, the objectives of this study were
the following: (1) to quantify AGB, BGB, and car-
bon stocks and (2) to evaluate the variation of these
attributes along the estuary. This study contributes
information to guide conservation and maintenance
strategies for the ecological functions and benefits of
the mangrove analyzed.

Material and Methods

Study area: The Mamanguape River estuary is part
of two conservation units (Fig. 1): the Area of Rele-
vant Ecological Interest (ARIE) Manguezais da Foz
do Rio Mamanguape (created in 1985) and the Barra
do Rio Mamanguape Environmental Protection Area
(APA) (created in 1993). The region's climate is
tropical and rainy (Am, according to the Kdeppen
classification) and the rainy season is concentrated
between February and August. Annual rainfall varies

from 1600 to 1900 mm and the average annual tem-
perature is between 24° and 26°C (Alvares et al.
2013). The tidal regime in the Mamanguape River
estuary is semi-diurnal and the amplitude is consis-
tent with the mesotidal class, with average heights of
syzygy and quadrature reaching 2.18 and 1.04 m, re-
spectively.
Biomass and carbon stock: Six study sites were es-
tablished along the Mamanguape River estuary (Fig.
1), spaced an average of 3.5 km apart. At each study
site, three plots were marked out parallel to the body
of water (5 m from the shore), 10 m apart. The area
of the 18 plots varied between 100 and 400 m?, and
was determined according to tree density (including
at least 30 live trees within each plot) (Schaeffer-
Novelli & Cintron 1986). Within each plot, the cir-
cumference at breast height (CBH) and the height of
living individuals > 1 m in height were measured.
Identification was carried out to the species level.
CBH was measured with a tape measure and height
with a telescopic stick with centimeter marks
(CRAIN CMR, model: 90182). The occurrence of
cut trees was recorded. Data were collected between
August 2019 and February 2020 and seasonal varia-
tion was not assessed.

From the CBH, the diameter at breast height
(DBH) was calculated according to the formula:
DBH = CBH / n. Subsequently, the average height,
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average DBH, basal area, stem density, dominance,
and relative density were calculated according to
Schaeffer-Novelli & Cintrén (1986). The dominance
and relative density of the species for each site were
calculated from the sum of the basal area values and
the density of individuals in the plots, respectively.

AGB and BGB were estimated non-destruc-

tively using allometric equations (Table I). The car-
bon content of the trees was estimated by multiply-
ing the AGB and BGB values by 0.44 (Rodrigues et
al. 2014) and 0.39 (Kauffman & Donato 2011), re-
spectively. The total carbon stock of the vegetation
was estimated by adding the AGB and BGB carbon
values. The total carbon stock was converted into
CO; equivalents by multiplying by a factor 3.67
(Kauffman & Donato 2011).
Sediment variables: Abiotic variables were sampled
in March 2020. A porewater sample was collected
from each plot at a depth of 50 cm using a PVC
tube, hose, and syringe. The salinity of the water was
estimated in the laboratory using a refractometer.

A soil sample (30 cm deep) was taken from
each plot to estimate the percentage of organic mat-
ter and grain size. Organic matter was determined
using the calcination method. Aliquots of 2 g of the
< 2 mm fraction of the soil were dried (80°C) to ob-
tain dry weight. The samples then remained in a
muffle furnace at 550°C for 2 hours. Subsequently,
the percentage of organic matter was calculated
based on the initial and final weights of the samples
(accuracy of 0.0001 g).

For the particle size analysis, the soil was
dried (80°C) and sieved to separate the < 2 mm frac-
tion. In aliquots of 30 g of soil, 250 mL of distilled
water and 10 mL of 1 M NaOH were added. The
sample volume was topped up to 1 L and then stirred
manually and left to stand overnight. The sand frac-
tion and the fine fraction (silt+clay) were separated
under running water using a 63-pm sieve and the re-
tained fraction (sand) was then dried at 80°C.
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Statistical analysis. Data were square root trans-
formed for comparison among study sites. Vegeta-
tion and sediment variables were compared using the
ANOVA one-way and Tukey’s post-hoc test. A
canonical correspondence analysis (CCA) was car-
ried out using the data on height, stem density,
AGB+BGB, and sediment variables (interstitial
salinity, silt+clay, and percentage of organic matter).
The same analysis was carried out with data on the
relative density of species and sediment variables.
All statistical analyses were carried out in the R en-
vironment (R Core Team, 2024).

Results

The basal area was lower at S4 and higher at
sites S1 and S6 (Table II; Fig. 2). For height, diame-
ter and density, the differences among study sites
were not statistically significant due to the high vari-
ability among plots. Anthropic actions were ob-
served, such as the use of a net to catch the crab
Ucides cordatus. Furthermore, selective logging was
recorded in all plots (relative frequency of 100%) at
sites 3, 4 and 5 and in two plots (relative frequency
of 67%) at sites 1, 2 and 6.

Four species were recorded in this study: Avi-
cennia germinans, Avicennia schaueriana, Laguncu-
laria racemosa, and Rhizophora mangle. The
species showed trends in their distribution along the
estuary (Fig. 3). Avicennia germinans was restricted
to the upper estuary (less marine influence). Lagun-
cularia racemosa showed a wide distribution with a
tendency to reduce its contribution in terms of domi-
nance and relative density towards the ocean. Avi-
cennia schaueriana and Rhizophora mangle also
showed a wide distribution along the estuary, but
with a tendency to increase in dominance and rela-
tive density towards the lower estuary (greater ma-
rine influence).

Table 1. Allometric equations for estimating above-ground biomass (AGB) and below-ground biomass (BGB) of man-

grove species

Species Equation R? Reference
AGB
Avicennia germinans AGB =0.14 D* 0.97 Fromard et al. (1998)

Avicennia schaueriana AGB = 123.8716 D**** 0.99 Estrada et al. (2014)

Laguncularia racemosa AGB = 0.1442 D*** 0.96 Medeiros & Sampaio (2008)

Rhizophora mangle AGB = 0.2938 D> 0.92 Medeiros & Sampaio (2008)
BGB

All species BGB = 0.199 p"**° D*>* 0.95 Komiyama et al. (2005)

Notes: D = diameter at breast height (cm) and p = wood density (g cm™). Wood density for trees was 0.64 for A. germi-
nans (Virgulino-Junior et al. 2020), 0.73 for A. schaueriana, 0.93 for L. racemosa, and 0.93 for R. mangle (Medeiros &

Sampaio, 2008).
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Table II. Summary of one-way ANOVA for vegetation and soil variables analyzed at the study sites in the mangrove of
the Mamanguape River estuary. *Statistically significant p-values (p<0.05).

F-statistic P
Vegetation
Height 0.6304 0.68048
Diameter 0.6605 0.66018
Basal area 4.2069 0.01928*
Density 1.3775 0.30299
Above-ground biomass 4.0210 0.02240*
Below-ground biomass 3.7315 0.02862*
Above-ground biomass carbon 4.0210 0.02240*
Below-ground biomass carbon 3.7315 0.02862*
Soil
Porewater salinity 12.735 0.000187*
Organic matter 29.605 0.000002*
Sand 14.329 0.000105*
Silt + clay 20.194 0.000018*
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Figure 2. Structural parameters in the sites (S) analyzed in the mangrove of the Mamanguape River estuary. Differ-
ent lowercase letters indicate significant differences among sites (p < 0.05).
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The average AGB values of the study sites
ranged from 24.7 to 200.1 Mg ha™’ (mean 136.6 +
106.5 Mg ha™), while for BGB these values ranged
from 13.2 to 79.3 Mg ha™ (mean 70.9 + 38.8 Mg ha"
) (Figs. 4a-4b). The average AGB/BGB ratio was
1.8. The carbon stocks of AGB and BGB ranged
from 10.9 to 88.1 MgC ha™ (mean 60.1 + 46.9 MgC
ha') and from 5.2 to 30.9 MgC ha" (mean 27.7 +
15.1 MgC ha), respectively (Figs. 4c-4d). Above-
ground and below-ground biomass and carbon stock
were significantly higher at site S6 and lower at site
S4 (Table II; Fig. 4).

The average total biomass carbon stock (AGB
+ BGB) of the Mamanguape River estuary mangrove
was estimated at 87.8 + 61.4 MgC ha™ (322.0 MgCO,
ha™). Considering the total mangrove area of the Ma-
manguape River estuary (4,620 ha) and the average
carbon stock per hectare (87.8 MgC ha™), the calcula-
tions indicated that the mangrove biomass stores
around 405,636 MgC, equivalent to 0.41 Tg CO..

Porewater salinity was highest at sites S4 and
S5 and lowest at S1 to S3 (Fig. 5). The highest per-
centages of organic matter were recorded in S2 and
the lowest in sites S1, S5 and S6. The sediments
were predominantly composed of fine sediments, ex-
cept at S6 with more than 80% sand. The sand frac-
tion was more abundant at site S6, with lower per-
centages at sites S1 to S4 (Fig. 5). The opposite re-
sults were recorded for the fine fraction (silt + clay).
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Figure 3 (opposite column). A. Dominance (basal area)
and B. relative density of species in the sites (S) analyzed
in the mangrove of the Mamanguape River estuary. Ag:
Avicennia germinans, As: Avicennia schaueriana, Lg: La-
guncularia racemosa and Rh: Rhizophora mangle.

CCA indicated that height, stem density, and
total biomass (AGB+BGB) were not related to sedi-
ment variables (999 permutations, F = 1.219, p =
0.284) and total inertia was 0.02 (0.3% constrained).
However, the CCA showed that the relative density
of species was related to the sediment variables (per-
mutations test: 999 permutations, F = 3.705, p <
0.001) and the total inertia was 1.82 (80.6% con-
strained). The first two axes explained 96% of the
total variance accumulated in the mean calculated
for the four species in terms of sediment variables
(Fig. 6). The ordination diagram showed that the
highest relative densities of Avicennia germinans
and Laguncularia racemosa were associated with
the lowest interstitial salinity (Fig. 6). In contrast,
the highest relative density of Avicennia schaueri-
ana was associated with muddier soils with a higher
percentage of organic matter, while Rhizophora
mangle was associated with sandier soils (Fig. 6).

Discussion

The results showed significant differences
among the study sites for basal area, AGB, BGB,
and carbon stock. However, no pattern in vegetation
structure was identified along the estuary. Differ-
ences among study sites may be attributed to varia-
tion in regulatory factors (e.g., salinity), resources
(e.g., nutrients), and hydroperiod (e.g., flood fre-
quency and river water supply) that control the
structure and functioning of mangrove forests (Twil-
ley & Rivera-Monroy 2005). However, there was a
lack of association among height, stem density, total
biomass, and sediment variables (interstitial salinity,
organic matter, and silt+clay).

Studies have shown that height, basal area,
biomass, and carbon stock tend to decrease down-
stream (Soto & Jimenez 1982, Saintilan, 1997, Silva
et al. 2005; Kauffman et al. 2011, Martins et al.
2011, Wang et al. 2014, Calegario et al. 2015,
Castillo et al. 2018, Rodriguez-Reales et al. 2025).
These studies suggest that lower values of these
variables in locations with greater marine influence
are associated with higher salinity values. In the
present study, contrary to expectations, salinity val-
ues were higher in locations further from the ocean
(S4 to S6), where vegetation, in general, did not ex-
hibit less structural development. The higher salinity
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Figure 4. Biomass and carbon stock at the sites (S) analyzed in the mangrove of the Mamanguape River estuary. A.
above-ground biomass (AGB), B. below-ground biomass (BGB), C. carbon in above-ground biomass and D. carbon in
below-ground biomass. Different lowercase letters indicate significant differences among sites (p < 0.05).

at sites S4 to S6 is probably related to the lower fre-
quency of substrate flooding due to the higher eleva-
tion of the terrain. Other factors can also influence
the structure and functioning of mangrove forests
when salinity is below the critical value of 65 (Cin-
tron et al. 1978), such as forest age, nutrient concen-
tration, percentage of organic matter, and anthro-
pogenic disturbances. For example, higher nutrient
concentrations in the sediment result in better struc-
tural development of mangrove forests (Chen &
Twilley 1999) and higher net primary productivity
(Castafieda-Moya et al. 2013). Costa et al. (2015)
also observed that mangroves showed higher values
of height and basal area associated with higher per-
centages of soil organic matter, with no trends along
the salinity gradient.

The forests analyzed in this study are sec-
ondary and anthropic actions interfere with their
structural development and the carbon stock in the
biomass along the estuary. Considering all the plots
analyzed, 88% included cut trunks and this anthro-

pogenic action was also observed in the areas sur-
rounding the sampling units. Logging can cause
changes in the structure and functioning of ecosys-
tems. Mangrove forests subjected to this disturbance
exhibit reduced values for height, diameter, basal
area, and/or density (Paludo & Klonowski 1999,
Walters 2005, Souza & Sampaio 2001, Alongi &
Carvalho 2008, Costa et al. 2021), with a consequent
decrease in biomass and carbon stock.

Intense selective logging in the mangroves of
the Mamanguape River estuary has been docu-
mented since the 1920s. The establishment of the
former Rio Tinto Textile Company in 1924 resulted
in excessive logging to obtain firewood for ovens
and factory buildings (ICMBio 2014, Brissac 2019).
The Rio Tinto Textile Company was shut down in
1983 and there was a reduction in logging for indus-
trial activity. However, the riverside communities
(indigenous and non-indigenous) also exploited the
mangroves for firewood, charcoal, and timber for
building houses, boats, and stakes for yam plantations;
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Figure 6 (previous page). Ordination diagram of the first two axes of the canonical correspondence analysis for the rel-
ative density data and sediment variables in the study sites in the mangrove of the Rio Mamanguape estuary. Environ-
mental variables are represented by vectors. Ag: Avicennia germinans, As: Avicennia schaueriana, Lg: Laguncularia

racemosa, and Rh: Rhizophora mangle.

and extracting the bark of the trees for tannin
(Paludo & Klonowski 1999). Logging took place in-
tensively throughout the mangrove area without
technical criteria, with approximately 44,095 trees
being removed between June 1989 and June 1990
(Paludo & Klonowski 1999). Currently, there has
been a reduction in the extraction of wood from the
mangrove due to the substitution of materials for
building houses (masonry) and the intensification of
conservation enforcement actions. However, selec-
tive logging is still recorded (Costa et al. 2021,
Freires et al. 2023), despite the ecosystem being part
of two Conservation Units.

This study showed that there were trends in
the distribution of species along the estuarine gradi-
ent. Avicennia germinans and Laguncularia race-
mosa showed greater contributions in the upper estu-
ary, while Avicennia schaueriana and Rhizophora
mangle showed greater densities in environments
under greater marine influence. Similar patterns
have been observed in other Brazilian mangroves
(Silva et al. 2005, Petri et al. 2011, Estrada et al.
2013, Costa et al. 2015, Calegario et al. 2015).
However, some studies have reported Laguncularia
racemosa dominating sites with greater marine in-
fluence (Chen & Twilley 1999, Bernini & Rezende
2010, Chagas et al. 2015). The zonation of man-
grove species along the estuarine gradient may be
related to interspecific differences in competitive
abilities in relation to salt tolerance, nutrient uptake,
and flood tolerance (Cintrén et al. 1978, Castafieda-
Moya et al. 2013).

In addition to influencing structural develop-
ment and carbon storage in mangrove biomass, an-
thropogenic actions also have the potential to alter
species composition. Studies suggest that selective
logging results in changes in abundance, as some
species may be exploited more than others (Eusebio
et al. 1987, Pinzon et al. 2003, Walters 2005, Chagas
et al. 2015, Costa et al. 2021). In the Mamanguape
River estuary, selective logging mainly affects La-
guncularia racemosa and Rhizophora mangle
(Paludo & Klonowski 1999). However, more re-
cently, Costa et al. (2021) demonstrated that selec-
tive logging caused a change in the relative density
of species in the upper estuary of the Mamanguape
River, where Avicennia germinans was replaced by
Laguncularia racemosa in some of the sites ana-

lyzed. In addition, due to its opportunistic character-
istics (Saenger 2002, Tomlinson 2016), Laguncu-
laria racemosa has been associated with forests al-
tered by anthropogenic disturbances (Soares 1999,
Bernini & Rezende 2010). Within this context, we
assume that anthropic actions influence the distribu-
tion of the species along the estuary analyzed.

The anthropogenic disturbances that affect
carbon storage and species distribution are not re-
stricted to selective logging, as the mangroves of the
Mamanguape River estuary are in an alarming state
of conservation. The amount of fresh water dis-
charged into the mangrove plays an important role,
as it determines the salinity of the soil and water in
the ecosystem and the availability of nutrients for
plant growth (Woodroffe 1992). The mangroves ana-
lyzed show signs of stress and widespread death in
various places throughout the estuary due to the re-
duction in fresh water. This has been attributed to
changes in the use and occupation of the watershed
and climate change (Freires et al. 2023).

Due to the increasing demand for water up-
stream, the amount of freshwater reaching the man-
grove is reduced in many mangroves, which can
cause a loss of the ecosystem's coverage area and a
change in the composition of mangrove species
(Gnanappazham & Selvam 2014). Changes in the
Mamanguape River basin are related to its history of
intense deforestation, the high demand for fresh wa-
ter for irrigation of sugarcane (dominant in the land-
scape) and other crops, and the degradation of
springs. In addition, the lower reaches of the Ma-
manguape River have undergone various drainage
and dyke construction works, which have resulted in
drastic hydrological changes in the mangrove forest.
We therefore assume that the various anthropogenic
interventions may have caused a reduction in the
tidal prism in the Mamanguape River estuary.

According to Lewis & Brown (2014), the de-
crease in the tidal prism results in the closure of tidal
channels and eventual overgrowth of mangroves.
This further reduces the tidal prism and therefore the
tidal flow, and eventually leads to the eradication of
mangrove forests due to hypersalinity or excessive
flooding from heavy rains that cannot drain from the
system (Lewis & Brown 2014). In the mangroves of
the Mamanguape River estuary, the progressive for-
mation of several hypersaline plains on the banks of
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the river, tributaries, and tidal channels has been
recorded, with the consequent death of mangrove
plants (Freires et al. 2023), probably due to the re-
duction of the tidal prism. High tree mortality has
also occurred due to the obstruction of channels that
prevent the flow of tides in internal areas of the
mangrove. In these places, so-called “ghost forests”
have been formed, with or without the collapse of
the soil surface. According to Krauss et al. (2018)
tree mortality reduces root renewal, with a conse-
quent decrease in the apparent density of the soil,
which results in its compaction and subsidence.
These sites tend to have an accumulation of tidal wa-
ter, where stagnation and an increase in water tem-
perature prevent the establishment of mangrove
plants (Krauss et al., 2018).

Climate change is reducing potential blue car-
bon sinks around the world (Richards et al. 2020).
Research has shown the influence of precipitation on
the primary productivity of coastal wetlands, as
plant productivity increases where there are higher
precipitation rates, which lead to a reduction in pore-
water salinity (Gabler et al. 2017, Osland et al.
2018, Duke et al. 2019). Changes in climate affect
carbon storage in mangroves due to changes in pre-
cipitation patterns, temperature increases, and sea
level rise (Gonneea et al. 2004). In the mangroves of
the Mamanguape River estuary, there has already
been a downward trend in rainfall and an increase in
air temperature in recent decades (Freires et al.
2023). These changes have accelerated the degrada-
tion of the ecosystem, as observed in other man-
groves (Gnanappazham & Selvam 2014, Ward et al.
2016, Friess et al. 2022).

The fresh water that reaches the mangroves
comes from surface runoff, precipitation, and
groundwater infiltration. As mentioned earlier, the
high demand for water for sugarcane cultivation, de-
forestation in the watershed, and the decrease in
rainfall have reduced the amount of fresh water for
the mangroves of the Mamanguape River estuary.
However, we believe that the situation could get
even worse, as groundwater consumption for sugar-
cane cultivation has increased in recent years due to
the scarcity of surface water. Increased groundwater
infiltration results in increased mangrove productiv-
ity because it reduces salinity levels (Mazda & Ikeda
2006, Hayes et al. 2019). In addition, access to
groundwater also increases nutrient availability,
which leads to higher primary productivity of man-
grove species (Hayes et al. 2019). Therefore, the in-
creasing use of groundwater for irrigation of sugar-
cane plantations is expected to increase interstitial
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salinity and result in further changes in species com-
position, reduction in structural parameters (height,
diameter and basal area), and loss of biomass and
carbon stocks in the mangrove forests of the Ma-
manguape River estuary.

Our estimate of AGB (136.6 Mg ha™) is at the
lower end of the global average range, with values
varying from 8.0 Mg ha" (Kauffman et al. 2011) to
573.0 Mg ha’ (Kauffman & Cole 2010). The AGB/
BGB ratio was 1.8 and this value is within the range
of 1.0 to 4.4 documented for mangroves worldwide
(Miao et al. 1998, Komiyama et al. 2008, Ragavan
et al. 2021, Singh et al. 2023).

The carbon stock in the AGB recorded in the
study area (60.1 MgC ha™) was lower than those
found in Amazonian mangroves (145.0 MgC ha™)
(Kauffman et al. 2018a), other mangrove forests in
northeastern Brazil (70.0 MgC ha™) (Kauffman et al.
2018b), and mangrove forests in southeastern Brazil
(75.3 MgC ha') (Rovai et al. 2021). The carbon
stock in the BGB recorded (27.7 MgC ha™) was also
lower when compared to mangrove forests in
Guaratiba (104.4 MgC ha™) (Santos et al. 2017) and
mangroves in the Cananéia-Iguape estuarine system
(82.0 MgC ha™) (Rovai et al. 2021), both in south-
eastern Brazil. Considering the latitudinal trends ob-
served in Brazilian mangroves (Beloto et al. 2024),
it was expected that the biomass carbon stocks in the
mangroves of the Mamanguape River estuary would
be higher than in the mangroves of southeastern
Brazil. However, differences among mangroves also
occur due to variations in the availability of fresh
water and nutrients, composition, age of the forest,
and anthropogenic influence (Lugo & Snedaker
1974, Schaeffer-Novelli et al. 1990, Saenger &
Snedaker 1993, Boillon et al. 2008, Alongi 2014).

Our biomass and carbon stock estimates were
carried out for fringe forests (high frequency of tidal
inundation) according to Lugo & Snedaker (1974)
and Schaeffer-Novelli et al. (2000). The average car-
bon stock in AGB in the study area (60.1 MgC ha™)
was lower than the global average for fringe forests
(81.8 MgC ha") (Estrada & Soares 2017), but was
higher when compared to fringe forests drastically
altered by anthropogenic disturbances in Araca Bay,
Sdo Paulo, Brazil (32.4 MgC ha™) (Schaeffer-Nov-
elli et al. 2018).

Fringe forests exhibit greater biomass and car-
bon stock when compared to basin forests and shrub
forests (Estrada & Soares 2017, Rovai et al. 2021).
Thus, the total carbon stock in the mangrove trees of
the Mamanguape River estuary (405,636 MgC) may
be lower than we estimated because we did not sam-
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ple basin forests. Even so, our data are useful as po-
tential carbon stock values that can be reached or
surpassed after restoring degraded areas in the man-
grove analyzed.

Considering the estimates from this study, the
destruction of mangrove biomass in the Maman-
guape River estuary would result in CO, emissions
equivalent to 0.41 Tg. This ecosystem lost 2.1% of
its coverage area between 1985 and 2020 (Freires et
al. 2023), which corresponded to the emission of ap-
proximately 31,262 MgC, equivalent to 0.03 Tg
CO,. We assume that emissions could be even higher
if we take into account mangrove areas that are
showing signs of stress and mortality.

The results revealed that the mangroves ana-
lyzed play an important role as a carbon sink. How-
ever, the biomass and carbon stock values recorded
were lower than other Brazilian mangroves, proba-
bly due to the variation of natural factors (e.g., avail-
ability of fresh water and nutrients) and to intense
anthropogenic disturbance related to selective log-
ging, changes in the Mamanguape River basin, and
climate change. Our study has some limitations that
may have influenced the biomass and carbon stock
values. As mentioned previously, sampling was re-
stricted to fringe forest and therefore the values may
have been overestimated. Furthermore, there were
limitations in quantifying the impact of selective
logging on carbon stocks. Therefore, we suggest fu-
ture studies to fill these gaps. Despite this, the study
raised warnings and made important contributions to
planning the sustainable management of mangroves,
especially in the face of climate change. Maintaining
and increasing blue carbon stocks requires sustain-
able management, with increased efforts to conserve
and restore degraded areas in the mangroves and the
Mamanguape River basin. In addition, government
agencies should step up control and monitoring of
groundwater use in the watershed to prevent an in-
crease in salinity in the estuarine region, which
could affect the mangrove and result in higher CO,
emissions. Conserving this ecosystem can provide
benefits for traditional communities and contribute
to increasing climate resilience (Zeng et al. 2021).
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